
ISSN: 2456-9186, Vol. I, Issue. II, Sept-2017

SUDHIR K MISHRA 4

वागथᭅः

(An International Journal of Sanskrit Research)

Kraka analysis of complicated Sanskrit sentences

Sudhir K Mishra
Pune

sudhirkumarmishra@gmail.com

Abstract: The present paper is case studies of kraka analysis of problematic kraka situations of the following types –

 clipped sentences like ‘gham’ (in ‘bhavn kutra gacchati ? gham)
 bigger noun phrases like sequences of adj1 adj2… adjn N with same vibhaktis (as in sundara sula nipua ca blaka) 

identifying the kraka in blaka only and not in other adjectives is a problem because we do not store nouns in the lexicon
 identifying lexical semantics and krakas based on them (for example, the rule ‘gati

buddhipratyayavasnrthaabdakarmkarmakmaikart sa au’[P 1.4.52] says that a particular kraka will apply in the sense of
these words)

 identification of abhihita and anabhihita (expressed and un-expressed)
 identification of the locus of the verb
 identification of the sense of tdarthya

krakas play an important role in formation and analysis of sentences. Without complete analysis of kraka, a sentence can not be analyzed.
Analysis of Sanskrit sentences at both syntactic and semantic levels together through a computational model is challenging. By evolving a
mechanism for kraka interpretation of complicated Sanskrit sentences, the authors here present a case for using such systems for Sanskrit to
Indian languages Machine Translation (MT). The overall aim is to test the algorithm on potentially problematic sentences to see if there is a
need to further tuning the algorithm. This system is based on Pini and Ktyyana kraka formulations

Key Words: Krakas, Aādhyāyī.

I. INTRODUCTION

Sanskrit is a highly inflected and relatively free word order
language. Therefore, identifying the constituents from the
place cues (as in western languages) is not possible. In
Sanskrit, the case endings of padas assign syntactic-semantic
relations to the constituents of sentence with verb. In this
work, the vibhakti endings and associated kraka are analyzed
for sentence comprehension. This approach is comparable with
the broad class of vibhakti and kraka based grammars such as
Pini and later grammarians. For kraka analysis, first
priority is identification of verb in sentence. Pini discusses
kraka [P 1.4.23- P 1.4.54] and vibhakti [P 2.3.1-P 2.3.73.) in
different chapters of Adhyy. Kraka is the underlying
sense of the vibhaktis and vibhaktis are the markers of kraka.
Krakas are not compulsory for each pada in a sentence, but
vibhaktis are. So, the basic problem is correct identification of
kraka and vibhakti in a sentence. The task becomes slightly

easier, if the verb is correctly identified and analyzed because
many kraka rules in Pini assume the verb in the center.
Secondly, except kart kraka all other krakas are expressed
only if they are un-expressed (unabhihita) by any other means
(like ti, kt, taddhita, samsa or nipta). If they are expressed
(abhihita), they show as kart kraka. The present work
assumes sandhi and samsa free input text. The work on kt,
taddhita, samsa identification is in initial stage at this point.

Kraka processing is done at three levels – structural,
syntax and semantic. On the surface level, the identification of
verb, subanta, upasarga and avyaya etc. will be done first, and
then the verb and kraka semantics is analyzed.

II. KAS MODULES

The present research is actually being implemented as an
online java servlet engine with relational database as backend.
The system called Kraka Analyzer for Sanskrit (KAS) has
the following modules –

वागथᭅः(An International Journal of Sanskrit Research) ISSN: 2456-9186, Vol. I, Issue. II, Sept-2017

SUDHIR K MISHRA 5

 the KAS engine.
 tianta identification
 subanta identification
 kraka identification and analysis

Pini kraka formulations are very complex and involve
balanced interplay of morphological information, verb
semantics, and sentence level syntax and semantics. The input
text (according to the assumed specifications) will be checked
for consistency by the KAS engine. If the consistency check
succeeds, the tianta identification is done with the help of a
database of verb forms of commonly found verbs. This
module will tag the verb for basic TAM, argument structure,
upasargas, nma-dhatu, derived forms, vcya etc. [Ref 11].
The subanta module will identify the case markers with the
help of the vibhakti Knowledge Base (KBv). The KBv stores
the primitive vibhakti morphemes and its allomorphs, and also
possible exceptions. To make sure that KAS does not return
wrong results for upapada vibhaktis like parita ka
(around ka) or other avyaya-subanta combination specially
described by Pini, this module will mark the constituent as
suspect for special exception processing according to kraka
formulations. The kraka module (KBk - a comprehensive
database of kāraka formulations of Pini, Patajali and
Ktyyana) will search for kraka rules for each vibhakti
marked constituent and generate analysis for each kraka -
vibhakti situation in the sentence.

In case the KBv returns ambiguous results, the expectancy
analysis of the verbs stored in the Verb Knowledge Base
(KBV) as sakarmaka, akarmaka, dvikarmaka, parasmai,
tmane, ubhaya, kart-vcya, karma-vcya, bhva-vcya etc.
will come in to disambiguate. The details for some of the
components and problematic kraka situations are as follows –

A. Tianta identification

Sanskrit verb forms are very complex. They carry tense,
aspect, person, number information all in the inflection forms.
Besides, they can also contain derivations containing semantic
informations like causation, desire, repitition, negation etc.
Therefore, it becomes very difficult to split out the verb and
separate the verb root and complex information units encoded
in it. Sanskrit has about 2000 verb roots classified in 10
morphological and semantic classes called gaas, and can also
be further sub-classified as normal forms (without any of the
12 derivational affixes – 11 listed by Pāini [P 3.1.32], 1 more
‘kvip’ added by Kātyāyana), and the derived forms with
ijanta (causative – ic), sannata (expressing desire – san,
kyac, kāmyac, kvip, kya, kya,i, yak, āy and iya) , yaanta
(duplicated – ya and yaluant). Then these can have
ātmane and parasmai forms in 10 lakāras and 3 x 3 person
and number combinations. Then these can also be potentially
prefixed with 22 prefixes. Finally there could be in-numerable
nāmadhātus (nominalized verbs).

We have stored all the verb roots from Pāini’s dhātu-
pātha (DP) with semantic class and other syntactic
information. The backend structure is as follows –

dhtu
id dhtu artha gaa pada

s/
a/
v

ak./
sa./
dv

1 bh sattym bhvdi p s ak
2 edha vddhou bhvdi p s ak
3 spardha saghare bhvdi p s sa

4 gdh
pratihlipsayo-
rgranthe bhvdi

p
s

sa
5 bdh viloane bhvdi p s sa

6 nth
ycopatpaiva-
ryu bhvdi

p
s

dv
Table 1

Since most of the DP dhātus are not found in literature, we

have stored the forms for only 550 commonly occurring
Sanskrit verb roots. The storage structure snippet in the
backend is as follows –

dhtu
_id 1.1.1 1.1.2 1.1.3 1.2.1 1.2.2
01 bhavati bhavta bhavanti bhavasi bhavata
32 yauti yuta yuvanti yaui yutha
39 rauti ruta ravanti raui ruth
74 nauti nauta naunti nautaasi nautastha
59 kauti kauta konti kaui kautha
76 snauti snauta snauvanti snaui snautha
97 uauti uuta uruvanti uraushi urutha

Table 2

a. tianta based kraka complications

In this section, we are presenting some problems with
respect to the tianta identification –

 In-complete sentences
sentences like gham which are answers to a question
like bhavna kutra gacchati ? or any other similar
half or incomplete sentences will create problem in
Kraka analysis because the system will mark them
as having no kraka at all (as there is no verb). But
such sentences do have verbs in the underlying
representation. Therefore, the problem before us is to
first complete these sentences with a suitable verb
according to the context and then start kraka
analysis. Such single-word sentences could be verbs
as well or ambiguous entities as in paam ka
gacchati ? rma. In this instance, rma may be a
noun or a verb form of √r. The KAS presently is
not considering such sentences.

 Dvikarmaka (di-transitive) verbs in certain senses
In such cases (as hinted in P 1.4.51 and later
explained by vttikras) the dvikarmaka verbs in 16
semantic categories mark krakas optionally. For
instance, in the sentences ‘gm paya dogdhi’ and
‘go paya dogdhi’, the krakas are expressed
differently in the same meaning. The optional use of
kraka in such cases depends on user vivak.

वागथᭅः(An International Journal of Sanskrit Research) ISSN: 2456-9186, Vol. I, Issue. II, Sept-2017

SUDHIR K MISHRA 6

b. Upasarga based kraka complication

[P 1.4.58] defines a class of 22 niptas (pra, pr, apa, sam,
anu, ava, nis, nir, dus, dur, vi, , ni, adhi, api, ati, su, ut,
abhi, prati, pari and upa) listed in prdigaa. They are
termed upasarga if they are used with a verb and play an
important role in the identification of kraka. [P 1.4.46] says if
‘adhi’ upasarga is used before √, √sth and √s, then the
locus of verb gets karma samj, as in adhiete adhitihati
adhyste v vaikuham hari Some of these [P1.4.83 -
P1.4.97] are discussed separately as karmapravacaniya with
different vibhakti assignment rules. For instance, when ‘upa’
implies inferiority it is termed karma, else if used in the sense
of superiority then seventh vibhakti is used [P 1.4.87]. All such
cases are stored separately as shown in the following table–

upasarga/
karmapravacaniy
a

dhtu condition kraka/vibhakti

adhi ,
sth,
s

u + v =
locus of

verb

karman

upa, anu, adhi,  vas u + v =
locus of

verb

karman

pari, apa,  fifth vibhakti
par ji unbearable

thing
fifth vibhakti

upa inferiority second vibhakti
upa superiority seventh

vibhakti

Table 3

c. Vcya based kraka complication

In Sanskrit there are three voices and in every voice
sentence structure is different, for instance-

kart vcya  subject in pratham vibhakti + object in
dvitiy vibhakti + verb according to subject
karma vcya  subject in tty vibhakti + object in
pratham vibhakti + verb according to object
bhva vcya  subject in tty vibhakti + no object
 + verb in third per, singular

this structure can help in solving the problem of ambiguity on
surface level. The required information for this is stored in
table 2 as shown above.

d. Semantics based kraka complication

 the problem with √sph
in the case of √sph, if the most desired object is
marked karma by [P1.4.49], however, the other less
desired objects are marked sampradna [P1.4.36]. The
KAS will provide both analyses. Such specific
information is separately stored in the verb database.

 the problem with √nth
In the use of √nth , if the object of desire can
optionally be marked by genitive marker [P 2.3.55] as

in the sentence sarpio nthate (genitive) or
mavakam nthate (accusative). All such cases are
stored separately as shown in the following table-

Upa-
sarg
a

Karmapra-
vacaniya

dhtu artha condition kraka vibhakti rule

 nth  ah 2.3.55
 gati jn subject

of
ijanta

karman 1.4.52

upa vas not
eating

locus of
verb

adhikaraa vrtika

 anu tty dvitiy 1.4.85

Table 4

B. Subanta identification

Correct vibhakti identification in nominal forms is a must
for kraka analysis. We are storing all possible allomorphs of
the 21 (7x3) nominal vibhaktis in Sanskrit [P 4.1.2] as shown
in the following table (for ‘a’ ending masculine nouns) -

vibhakti anta li 1.1 1.2 1.3

prathamā a P a au ā
prathamā ā P ā au ā
prathamā i P i  aya
prathamā  P  yau ya
prathamā u P u  ava
prathamā  P  uvo uva
prathamā  P ā ārau/arau āra/ara

table 5

There may be cases of ambiguity in some vibhaktis like
prathamā, dvityā duals, ttyā, caturth, pacam plurals and
also in ah, saptam duals.

a. Avyaya based kraka complication

In case of indeclinable being used in conjunction with
verbs, different krakas are used as in gurum namaskaroti
(karma), but if it not used otherwise, then the default kraka
will be used as in gurave nama (sampradna). This is
discussed as upa-pada-vibhakti in Pini. All such cases are
stored separately as shown in the following table-

avyaya kraka/vibhakti exception rule
nama caturth dvitiy 2.3.16
nn dvitiy, tty,

pacam
 2.3.32

ubhayat dvitiy vrtika
abhita dvitiy vrtika
vin dvitiy, tty,

pacam
 2.3.32

Table 6

C. Kraka based complications

There are certain cases where the desire of the agent
determines the kraka. For example in case of more than one
objects in a sentence, the most desired is karma according to

वागथᭅः(An International Journal of Sanskrit Research) ISSN: 2456-9186, Vol. I, Issue. II, Sept-2017

SUDHIR K MISHRA 7

Pini [P 1.4.50], however the other less desired are also
termed karma. So, in sentences with such situations, the KAS
should be able to differentiate between such karmas. For
instance, in the sentence ‘grmam gacchan tam spati’
(‘while going to village (he) touches straw’) agent’s most
desired goal is to go to village, and un-desired object is
accidentally touching the straw (which he happens to trample
on). Here both are marked object for different reasons. So, the
KAS should be able to provide this analysis.

a. Mapping based Kraka complication

If any noun has n number of adjectives then the correct
identification of the head noun becomes very challenging in
Sanskrit as all of them will have the same vibhaktis. Since
identifying the head noun may be important for kraka
analysis in cases of semantics bases assignments, this poses a
big problem for any computer bases kraka system. This
becomes more challenging when the position of the head noun
cannot be predicted due to relatively free word order within
adj-n sequence in Sanskrit.

III. SAMPLE ILLUSTRATION

The following examples illustrate the proposed kraka
processing of Sanskrit sentences by applying on Pini and
Ktyyana kraka formulations and data resources-

Input => makaradhvajena nithe pryaa kmina
balavaduttpyante.

Module 1: uttpyante {([ut] Pre [tap] VR [yak] affix)
la_pra_bahu}

Module 2: karma vcya

Module 3: makaradhvajena (tri) nithe (sap) pryaa (avy)
kmina (pra) balavad
 (pra)

Module 4: pryaa (avyaya)

Module 5: makaradhvajena (2.3.18) nithe (2.3.7) pryaa
(avyaya) kmina (2.3.46)

CONCLUSION

Kāraka analysis is complicated due to the complex nature
of sentence structure in which several kāraka depends on other
constituents of the sentence. It is only possible after
integration of other modules like subanta analysis, tianta
analysis, samāsa analysis, kdanta analysis, taddhita analysis,
avyaya analysis etc. The results and algorithm presented may
need improvements based on the feedback.

REFERENCES

[1]. A. Bharati, Sangal R., 1990, A karaka based approach to
parsing of Indian languages, proc of the 13 th COLING
vol 3, pp 30-35, Finland.

[2]. Rick Briggs, Knowledge representation in Sanskrit, AI
magazine, 1985.

[3]. Sudhir K Mishra, Girish N Jha, Identifying Verb
Inflections in Sanskrit Morphology, In proc. of SIMPLE
05, IIT Kharagpur, 2005, pp 79-81.

[4]. Sudhir K Mishra, Panini’s Karaka System for Language
Processing, Vidyanidhi Prakashan, New Delhi, 2016.

[5]. Sudhir K Mishra, Aādhyāyīsūtrapāha (Vārtika-
Gaapāha-Dhātupāha-Liṅgānuśāsan-Uādi-
Fisūtrasahita), Vidyanidhi Prakashan, New Delhi, 2016.

[6]. Sudhir K Mishra, Computational Formulation and
mapping of Pāini’s Kāraka-Vibhakti for Machine
Translation, International Journal of Linguistics &
Computing Research, Vol. I, Issue. I, June-2017.

